Formation of polarity convergences underlying shoot outgrowths

نویسندگان

  • Katie Abley
  • Susanna Sauret-Güeto
  • Athanasius Fm Marée
  • Enrico Coen
چکیده

The development of outgrowths from plant shoots depends on formation of epidermal sites of cell polarity convergence with high intracellular auxin at their centre. A parsimonious model for generation of convergence sites is that cell polarity for the auxin transporter PIN1 orients up auxin gradients, as this spontaneously generates convergent alignments. Here we test predictions of this and other models for the patterns of auxin biosynthesis and import. Live imaging of outgrowths from kanadi1 kanadi2 Arabidopsis mutant leaves shows that they arise by formation of PIN1 convergence sites within a proximodistal polarity field. PIN1 polarities are oriented away from regions of high auxin biosynthesis enzyme expression, and towards regions of high auxin importer expression. Both expression patterns are required for normal outgrowth emergence, and may form part of a common module underlying shoot outgrowths. These findings are more consistent with models that spontaneously generate tandem rather than convergent alignments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mechanism Underlying the Electrical Polarity Detection of Sensitive Plant, Mimosa Pudica

Natural indicators of the electrical polarity of a direct current (DC) source is limited to semiconductor based diodes and transistors. Recently a novel bio-natural indicator of the polarity of a DC source have been reported. Mimosa Pudica or sensitive plant is found to be a natural detector of a DC source polarity, however the mechanism underlying this phenomenon is not known. This paper aims ...

متن کامل

The Physiological Basis of Morphological Polarity in Regeneration. I

1. In Bryophyllum calycinum two apical leaves suppress the shoot formation in all the dormant buds situated basally from the leaf; one apical leaf suppresses the shoot formation in the basal buds situated in the same half of the stem where the leaf is, and, if one-half of the petiole of such a leaf is removed, the growth of basal buds in one quadrant of the stem is suppressed. 2. This inhibitor...

متن کامل

Leaf polarity and meristem formation in Arabidopsis.

Shoot apical meristems (SAMs) of seed plants are small groups of pluripotent cells responsible for making leaves, stems and flowers. While the primary SAM forms during embryogenesis, new SAMs, called axillary SAMs, develop later on the body of the plant and give rise to branches. In Arabidopsis plants, axillary SAMs develop in close association with the adaxial leaf base at the junction of the ...

متن کامل

The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo.

During Arabidopsis embryo development, cotyledon primordia are generated at transition stage from precursor cells that are not derived from the embryonic shoot apical meristem (SAM). To date, it is not known which genes specifically instruct these precursor cells to elaborate cotyledons, nor is the role of auxin in cotyledon development clear. In laterne mutants, the cotyledons are precisely de...

متن کامل

A surveillance system regulates selective entry of RNA into the shoot apex.

Phloem-mobile endogenous RNA is trafficked selectively into the shoot apex. In contrast, most viruses and long-distance post-transcriptional gene silencing (PTGS) signals are excluded from the shoot apex. These observations suggest the operation of an underlying regulatory mechanism. To examine this possibility, a potexvirus movement protein, known to modify cell-to-cell trafficking and PTGS, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016